3.406 \(\int \frac{(a+i a \tan (c+d x))^{3/2}}{(e \sec (c+d x))^{7/2}} \, dx\)

Optimal. Leaf size=125 \[ \frac{16 i a^2 \sqrt{e \sec (c+d x)}}{21 d e^4 \sqrt{a+i a \tan (c+d x)}}-\frac{8 i a \sqrt{a+i a \tan (c+d x)}}{21 d e^2 (e \sec (c+d x))^{3/2}}-\frac{2 i (a+i a \tan (c+d x))^{3/2}}{7 d (e \sec (c+d x))^{7/2}} \]

[Out]

(((16*I)/21)*a^2*Sqrt[e*Sec[c + d*x]])/(d*e^4*Sqrt[a + I*a*Tan[c + d*x]]) - (((8*I)/21)*a*Sqrt[a + I*a*Tan[c +
 d*x]])/(d*e^2*(e*Sec[c + d*x])^(3/2)) - (((2*I)/7)*(a + I*a*Tan[c + d*x])^(3/2))/(d*(e*Sec[c + d*x])^(7/2))

________________________________________________________________________________________

Rubi [A]  time = 0.229669, antiderivative size = 125, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 2, integrand size = 30, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.067, Rules used = {3497, 3488} \[ \frac{16 i a^2 \sqrt{e \sec (c+d x)}}{21 d e^4 \sqrt{a+i a \tan (c+d x)}}-\frac{8 i a \sqrt{a+i a \tan (c+d x)}}{21 d e^2 (e \sec (c+d x))^{3/2}}-\frac{2 i (a+i a \tan (c+d x))^{3/2}}{7 d (e \sec (c+d x))^{7/2}} \]

Antiderivative was successfully verified.

[In]

Int[(a + I*a*Tan[c + d*x])^(3/2)/(e*Sec[c + d*x])^(7/2),x]

[Out]

(((16*I)/21)*a^2*Sqrt[e*Sec[c + d*x]])/(d*e^4*Sqrt[a + I*a*Tan[c + d*x]]) - (((8*I)/21)*a*Sqrt[a + I*a*Tan[c +
 d*x]])/(d*e^2*(e*Sec[c + d*x])^(3/2)) - (((2*I)/7)*(a + I*a*Tan[c + d*x])^(3/2))/(d*(e*Sec[c + d*x])^(7/2))

Rule 3497

Int[((d_.)*sec[(e_.) + (f_.)*(x_)])^(m_)*((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(b*(d*
Sec[e + f*x])^m*(a + b*Tan[e + f*x])^n)/(a*f*m), x] + Dist[(a*(m + n))/(m*d^2), Int[(d*Sec[e + f*x])^(m + 2)*(
a + b*Tan[e + f*x])^(n - 1), x], x] /; FreeQ[{a, b, d, e, f}, x] && EqQ[a^2 + b^2, 0] && GtQ[n, 0] && LtQ[m, -
1] && IntegersQ[2*m, 2*n]

Rule 3488

Int[((d_.)*sec[(e_.) + (f_.)*(x_)])^(m_.)*((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(b*(d
*Sec[e + f*x])^m*(a + b*Tan[e + f*x])^n)/(a*f*m), x] /; FreeQ[{a, b, d, e, f, m, n}, x] && EqQ[a^2 + b^2, 0] &
& EqQ[Simplify[m + n], 0]

Rubi steps

\begin{align*} \int \frac{(a+i a \tan (c+d x))^{3/2}}{(e \sec (c+d x))^{7/2}} \, dx &=-\frac{2 i (a+i a \tan (c+d x))^{3/2}}{7 d (e \sec (c+d x))^{7/2}}+\frac{(4 a) \int \frac{\sqrt{a+i a \tan (c+d x)}}{(e \sec (c+d x))^{3/2}} \, dx}{7 e^2}\\ &=-\frac{8 i a \sqrt{a+i a \tan (c+d x)}}{21 d e^2 (e \sec (c+d x))^{3/2}}-\frac{2 i (a+i a \tan (c+d x))^{3/2}}{7 d (e \sec (c+d x))^{7/2}}+\frac{\left (8 a^2\right ) \int \frac{\sqrt{e \sec (c+d x)}}{\sqrt{a+i a \tan (c+d x)}} \, dx}{21 e^4}\\ &=\frac{16 i a^2 \sqrt{e \sec (c+d x)}}{21 d e^4 \sqrt{a+i a \tan (c+d x)}}-\frac{8 i a \sqrt{a+i a \tan (c+d x)}}{21 d e^2 (e \sec (c+d x))^{3/2}}-\frac{2 i (a+i a \tan (c+d x))^{3/2}}{7 d (e \sec (c+d x))^{7/2}}\\ \end{align*}

Mathematica [A]  time = 0.426534, size = 98, normalized size = 0.78 \[ \frac{a (\cos (d x)-i \sin (d x)) \sqrt{a+i a \tan (c+d x)} (12 \sin (2 (c+d x))+9 i \cos (2 (c+d x))-7 i) (\cos (c+2 d x)+i \sin (c+2 d x))}{21 d e^3 \sqrt{e \sec (c+d x)}} \]

Antiderivative was successfully verified.

[In]

Integrate[(a + I*a*Tan[c + d*x])^(3/2)/(e*Sec[c + d*x])^(7/2),x]

[Out]

(a*(Cos[d*x] - I*Sin[d*x])*(-7*I + (9*I)*Cos[2*(c + d*x)] + 12*Sin[2*(c + d*x)])*(Cos[c + 2*d*x] + I*Sin[c + 2
*d*x])*Sqrt[a + I*a*Tan[c + d*x]])/(21*d*e^3*Sqrt[e*Sec[c + d*x]])

________________________________________________________________________________________

Maple [A]  time = 0.303, size = 103, normalized size = 0.8 \begin{align*} -{\frac{2\,a \left ( 3\,i \left ( \cos \left ( dx+c \right ) \right ) ^{3}-3\, \left ( \cos \left ( dx+c \right ) \right ) ^{2}\sin \left ( dx+c \right ) -4\,i\cos \left ( dx+c \right ) -8\,\sin \left ( dx+c \right ) \right ) \left ( \cos \left ( dx+c \right ) \right ) ^{4}}{21\,d{e}^{7}}\sqrt{{\frac{a \left ( i\sin \left ( dx+c \right ) +\cos \left ( dx+c \right ) \right ) }{\cos \left ( dx+c \right ) }}} \left ({\frac{e}{\cos \left ( dx+c \right ) }} \right ) ^{{\frac{7}{2}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+I*a*tan(d*x+c))^(3/2)/(e*sec(d*x+c))^(7/2),x)

[Out]

-2/21/d*a*(3*I*cos(d*x+c)^3-3*cos(d*x+c)^2*sin(d*x+c)-4*I*cos(d*x+c)-8*sin(d*x+c))*(a*(I*sin(d*x+c)+cos(d*x+c)
)/cos(d*x+c))^(1/2)*(e/cos(d*x+c))^(7/2)*cos(d*x+c)^4/e^7

________________________________________________________________________________________

Maxima [A]  time = 1.92488, size = 113, normalized size = 0.9 \begin{align*} \frac{{\left (-3 i \, a \cos \left (\frac{7}{2} \, d x + \frac{7}{2} \, c\right ) - 14 i \, a \cos \left (\frac{3}{2} \, d x + \frac{3}{2} \, c\right ) + 21 i \, a \cos \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) + 3 \, a \sin \left (\frac{7}{2} \, d x + \frac{7}{2} \, c\right ) + 14 \, a \sin \left (\frac{3}{2} \, d x + \frac{3}{2} \, c\right ) + 21 \, a \sin \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )\right )} \sqrt{a}}{42 \, d e^{\frac{7}{2}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+I*a*tan(d*x+c))^(3/2)/(e*sec(d*x+c))^(7/2),x, algorithm="maxima")

[Out]

1/42*(-3*I*a*cos(7/2*d*x + 7/2*c) - 14*I*a*cos(3/2*d*x + 3/2*c) + 21*I*a*cos(1/2*d*x + 1/2*c) + 3*a*sin(7/2*d*
x + 7/2*c) + 14*a*sin(3/2*d*x + 3/2*c) + 21*a*sin(1/2*d*x + 1/2*c))*sqrt(a)/(d*e^(7/2))

________________________________________________________________________________________

Fricas [A]  time = 1.98865, size = 273, normalized size = 2.18 \begin{align*} \frac{{\left (-3 i \, a e^{\left (6 i \, d x + 6 i \, c\right )} - 17 i \, a e^{\left (4 i \, d x + 4 i \, c\right )} + 7 i \, a e^{\left (2 i \, d x + 2 i \, c\right )} + 21 i \, a\right )} \sqrt{\frac{a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt{\frac{e}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} e^{\left (-\frac{1}{2} i \, d x - \frac{1}{2} i \, c\right )}}{42 \, d e^{4}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+I*a*tan(d*x+c))^(3/2)/(e*sec(d*x+c))^(7/2),x, algorithm="fricas")

[Out]

1/42*(-3*I*a*e^(6*I*d*x + 6*I*c) - 17*I*a*e^(4*I*d*x + 4*I*c) + 7*I*a*e^(2*I*d*x + 2*I*c) + 21*I*a)*sqrt(a/(e^
(2*I*d*x + 2*I*c) + 1))*sqrt(e/(e^(2*I*d*x + 2*I*c) + 1))*e^(-1/2*I*d*x - 1/2*I*c)/(d*e^4)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+I*a*tan(d*x+c))**(3/2)/(e*sec(d*x+c))**(7/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (i \, a \tan \left (d x + c\right ) + a\right )}^{\frac{3}{2}}}{\left (e \sec \left (d x + c\right )\right )^{\frac{7}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+I*a*tan(d*x+c))^(3/2)/(e*sec(d*x+c))^(7/2),x, algorithm="giac")

[Out]

integrate((I*a*tan(d*x + c) + a)^(3/2)/(e*sec(d*x + c))^(7/2), x)